# Focus on Membrane Technology for Water Treatment

Toray Industries, Inc. Dr. Masaru Kurihara

September 2003

## CONTENT

**1. World Water Problem** 

Water Treatment Membranes
 RO Membranes & NF Membranes

4. UF Membranes & MF Membranes - Drinking Water Production -

5. Immersed Membranes for Wastewater Treatment

6. Conclusion

## **Introduction of Doctor M. Kurihara**

#### Title:

Toray Industries, Inc. Senior Director
In charge of Water Treatment Division, Technology Center (Water
Treatment Technology Center), and Research & Development Division
Director of International Desalination Association (IDA)
Vice President of Japan Desalination Association (JDA)
Director of Japan Membrane Society, Part-time lecturer at Kyoto University

#### **Personal History:**

1963 Joined Toray Ind., Inc.

1970 Doctoral Dissertation at the University of Tokyo Membrane Research with Prof. J.K. Stille at the University of Iowa as Post-Doctoral Fellow

1991 General Manager, Polymers Research Labs

#### Awards:

1992 Chemical Society of Japan Technical Award

2002 International Desalination Association Presidential Award

2003 Okochi Memorial Production Prize

### **Toray – The Leader in "Advanced Materials"**

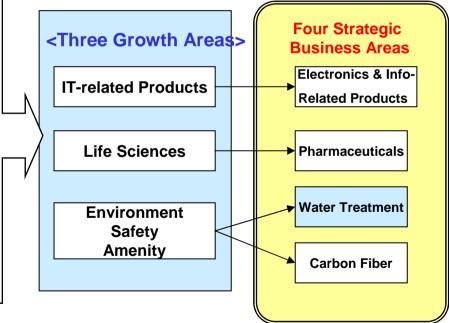
Achieving High Growth by Constantly Supplying "Advanced Materials" – Developed with our Core Technologies – into our Three Growth Areas (an expansion of our four strategic business areas)

#### <Advanced Materials>

- Nanofibers
- High-performance Fibers

and Resins

<Core Technologies>


**Organic Synthetic** 

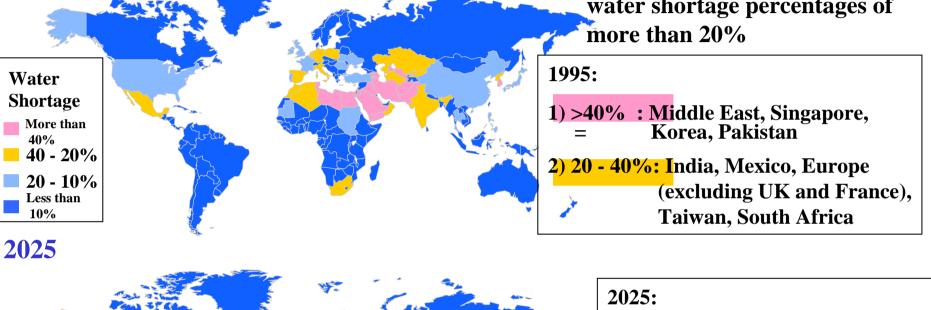
Chemistry

**Polymer Chemistry** 

**Biochemistry** 

- Nano-alloy Materials
- Advanced Electronics Materials
- Biomaterials
- Separation Materials
- High-performance Composite Materials
- Recycling Materials




#### 'TORAY'

#### World Water Shortage - Now and Future

1995

(WMO and others, 1996)

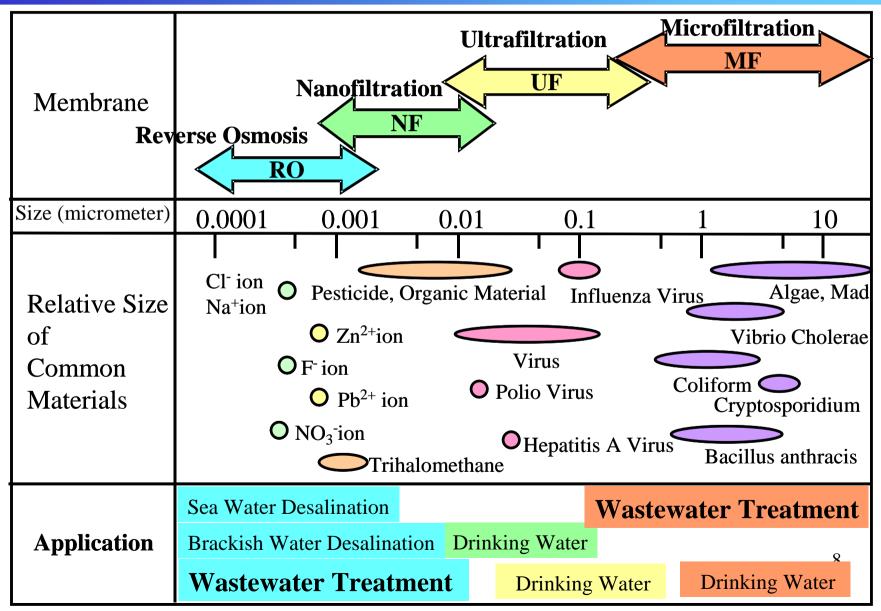
Main regions which have high water shortage percentages of



- 1) >40% : Middle East, Korea, Pakistan, India, Algeria, South Africa, etc.
- 2) 20 40%: Mexico, China, USA, **Europe** (excluding UK)

Water shortage presumed to continue worldwide especially in Europe, the U.S.A., and China by 2025

#### **'TORAY'** Water Problem and Membrane Technology


|                 | Water Problem                 |                    | Membrane Technology for Water Treatment |                  |                                      |  |
|-----------------|-------------------------------|--------------------|-----------------------------------------|------------------|--------------------------------------|--|
| Region, Country | Water<br>Resource<br>Shortage | Water<br>Pollution | Fresh Water<br>Treatment                | Desalination     | Wastewater<br>Reuse &<br>Reclamation |  |
| United States   | Problem                       | Problem            | In operation                            | In operation     | Construction                         |  |
| Benelux         |                               | Problem            | Being applied                           |                  | In operation                         |  |
| UK, France      |                               | Problem            | In operation                            |                  | Being applied                        |  |
| Spain           | Problem                       | Problem            | Being applied                           | In operation     | Being applied                        |  |
| Saudi Arabia    | Severe                        |                    |                                         | In operation     | Planning                             |  |
| Kuwait          | Severe                        |                    |                                         | In operation     | Construction                         |  |
| China           | Problem                       | Severe             | Being applied                           | Being<br>applied | Planning                             |  |
| Singapore       | Severe                        |                    | In operation                            | In operation     | In operation                         |  |
| Japan           |                               | Problem            | In operation                            | In operation     |                                      |  |

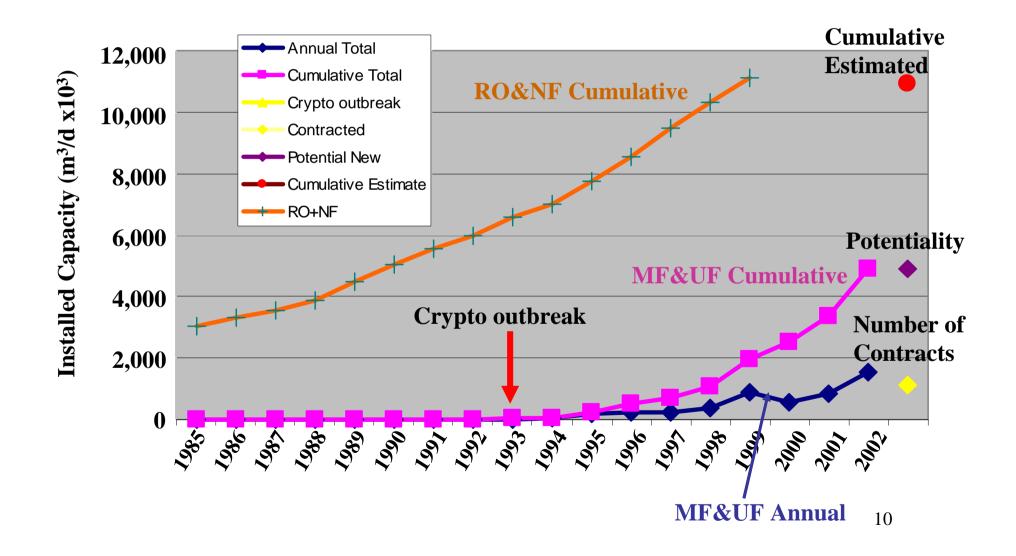
Water resources are extending from fresh water to sea water and wastewater.



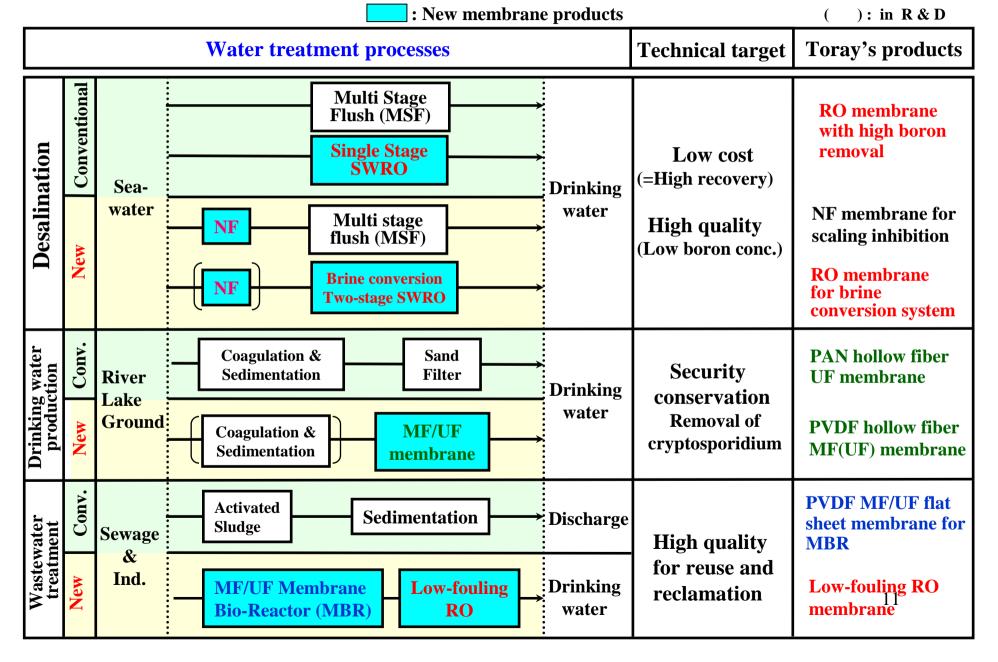
## **Water Treatment Membranes**

#### **Membranes and Relative Size of Common Materials**






#### **Separation Characteristics of Various Membranes**


|                                | <b>RO/NF Membranes</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UF/MF Membranes                                                    |  |  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|
| Permeation<br>and<br>Rejection | Low MW<br>organic materials<br>(Mw ≤ 200)<br>Monovalent ions<br>Water<br>Water<br>Membrane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ions<br>Dissolved<br>Matter<br>Water<br>Water<br>Membrane          |  |  |
| Separation<br>Mechanism        | RO:Molecular interactionImage: Constraint of the sector o | MF: Dynamic separation<br>Size exclusion<br>UF: Electric repulsion |  |  |
| Pore Size                      | RO: <1 nm<br>NF: 1~10 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UF: 10~100 nm<br>MF: >100 nm 9                                     |  |  |



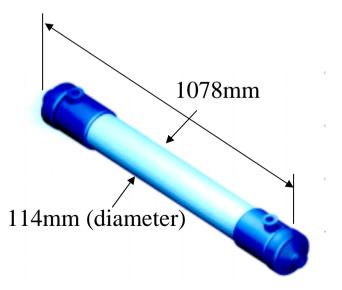
#### **Global Capacity of Membrane Filtration Plants**



#### **TORAY** Membrane Applications - Conventional & New Technologies



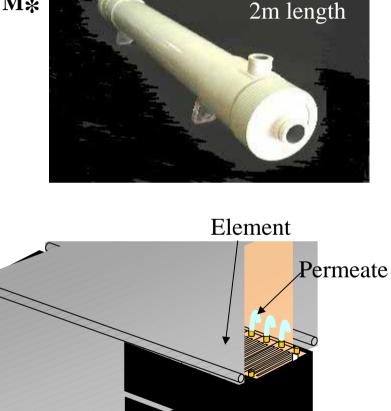
## **Toray's Membranes & Applications**


#### 1. RO & NF Membrane Romembra <sup>TM</sup>\*

- 1) Seawater & brackish water desalination
- 2) Ultra pure water production
- 3) Harmful material removal
- 4) Wastewater reuse



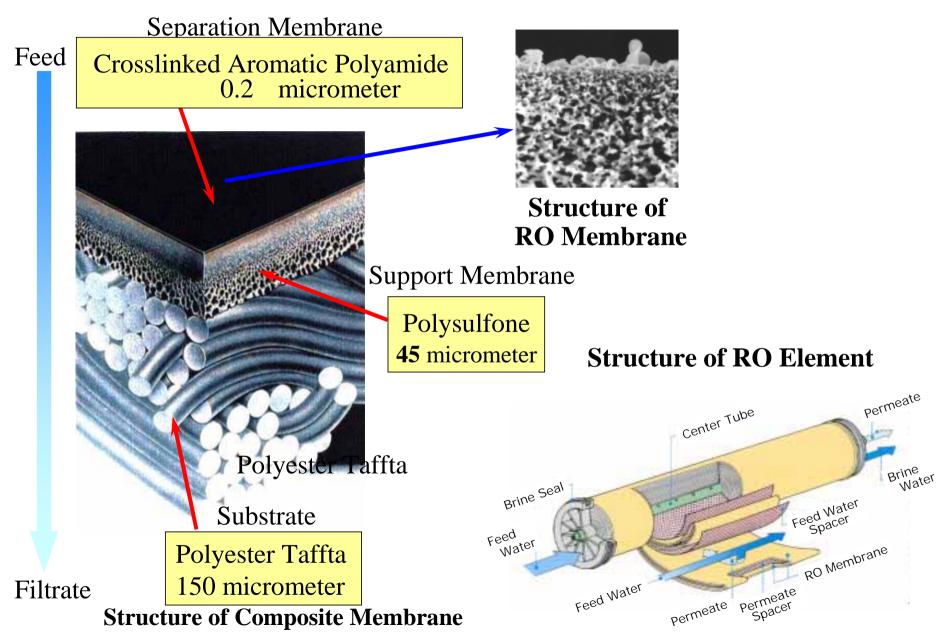
- 1) Industrial process water production
- 2) Drinking water production
- 3) Wastewater reuse



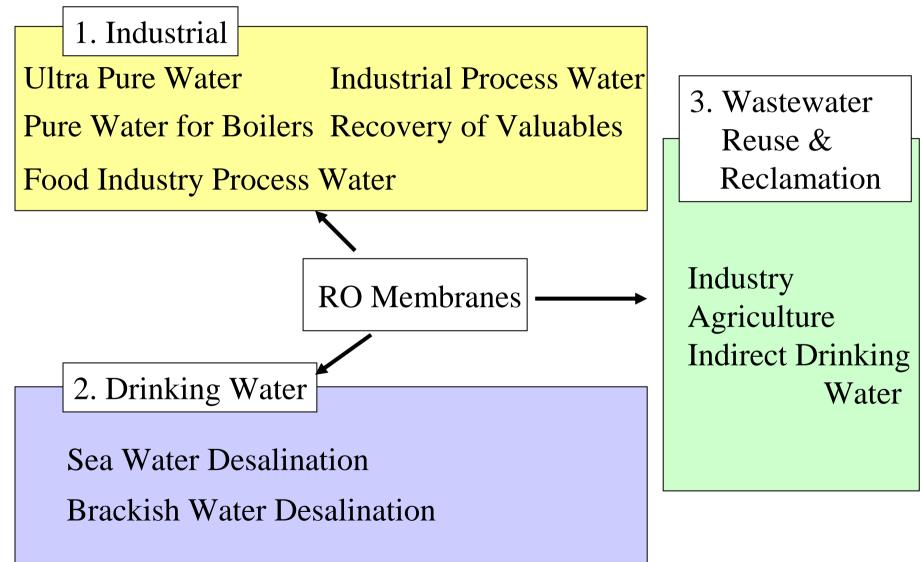



8 inches

## **Toray's Membranes & Applications**

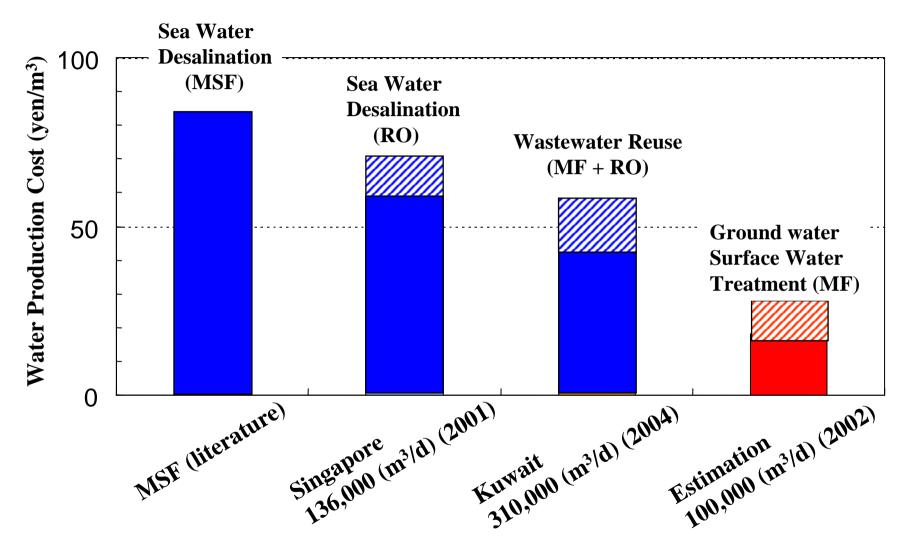

- **3. PVDF Hollow Fiber MF Membrane** Torayfil-F <sup>TM</sup>\*
  - 1) Drinking water production
  - 2) Industrial process water production
  - 3) Pre-treatment for seawater desalination
  - 4) Wastewater reuse
- 4. PVDF Flat Sheet MF Membrane for MBR
  - 1) Municipal and industrial wastewater treatment
  - 2) Municipal and industrial wastewater reuse






## **RO Membranes & NF Membranes**

### **Structure of RO Membrane Element**




## **Application of RO Membranes**





#### Water Production Cost



Water resource can be chosen by country.

17

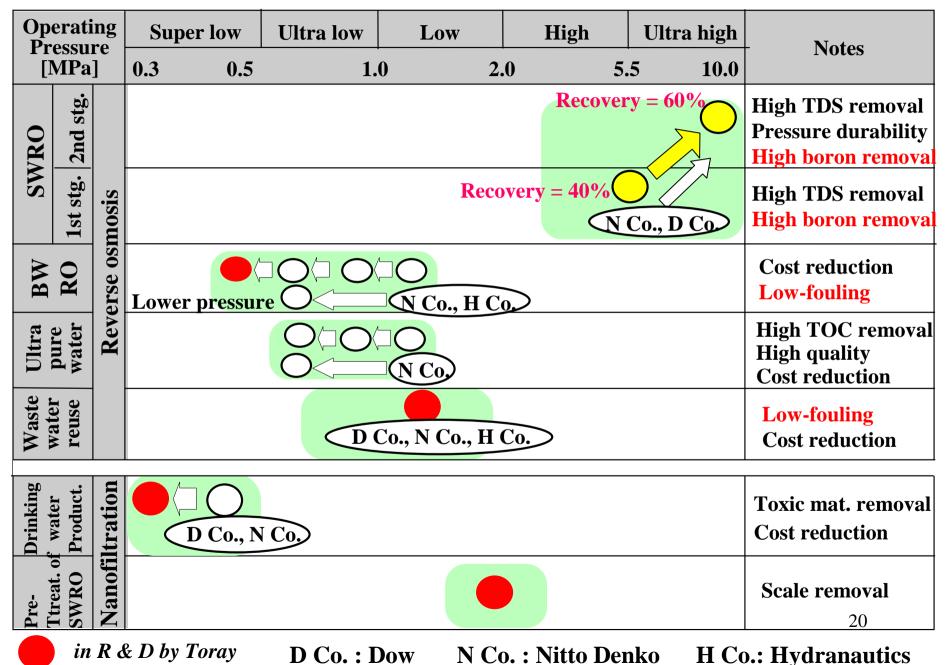


#### **Progress of RO Seawater Desalination Plants**

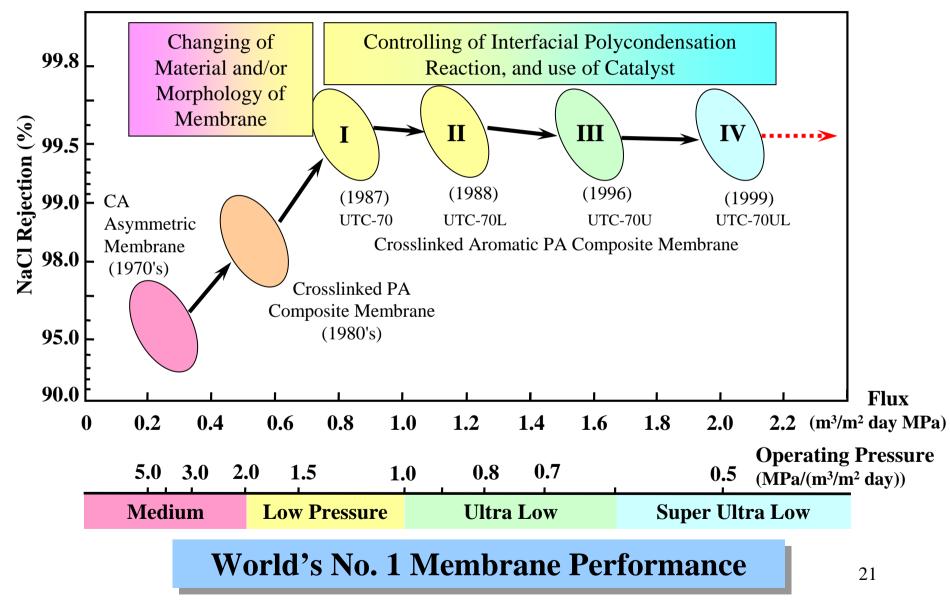
|                                     |                                   | <b>1980's</b>  | <b>1990's</b>   | 2000's         |  |
|-------------------------------------|-----------------------------------|----------------|-----------------|----------------|--|
| Recovery                            | %                                 | 25             | 40 - 50         | 55 - 65        |  |
| <b>Operational Pressure</b>         | psig<br>(MPa)                     | 1,000<br>(6.9) | 1,200<br>(8.25) | 1,400<br>(9.7) |  |
| Product Water<br>Quality (TDS)      | mg/l                              | 500            | 300             | <200           |  |
| <b>Energy</b><br><b>Consumption</b> | kWh/kgal<br>(kWh/m <sup>3</sup> ) | 45<br>(12)     | 21<br>(5.5)     | 17.4<br>(4.6)  |  |

I. Moch, Pre-prints of ADA Conference in Lake Tahoe (2000)

Progress of membrane technology realized good quality and energy saving.

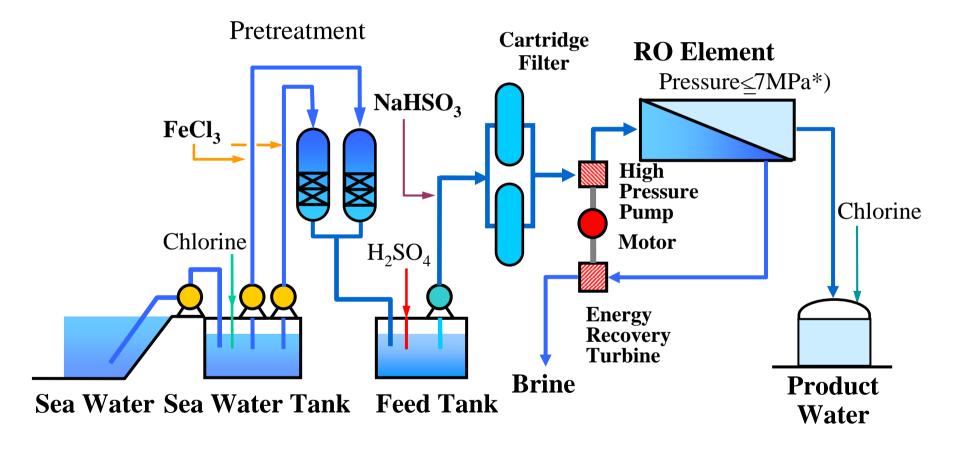

#### **TORAY** Sea Water Desalination RO Membranes in Global Market

| Module Type  | Supplier                     | Product  | Material             | Morphology             |  |
|--------------|------------------------------|----------|----------------------|------------------------|--|
|              | Toray                        | SU-800   |                      |                        |  |
| Spiral       | Dow/<br>Filmtech             | SW-30    | Crosslinked          | Composite<br>Membrane  |  |
|              | Koch/<br>Fluidosystems       | TFCL-HP  | Aromatic Polyamide   |                        |  |
|              | Nitto Denko/<br>Hydranautics | NTR-SWC  |                      |                        |  |
| Hollow Fiber | Тоуоbо                       | HOLLOSEP | Cellulose Triacetate | Asymmetric<br>Membrane |  |


Crosslinked aromatic polyamide/spiral module is global standard. Toyobo is the only hollow fiber module supplier. DuPont withdrew from the hollow fiber RO module business in March 2001.

## **Technological Trends of RO/NF Membranes**

**TORAY** 




#### **Progress of RO Membrane Performance**





## Conventional One-Stage RO Sea Water Desalination System



\*) Spiral element

#### **Okinawa Sea Water Desalination Plant**



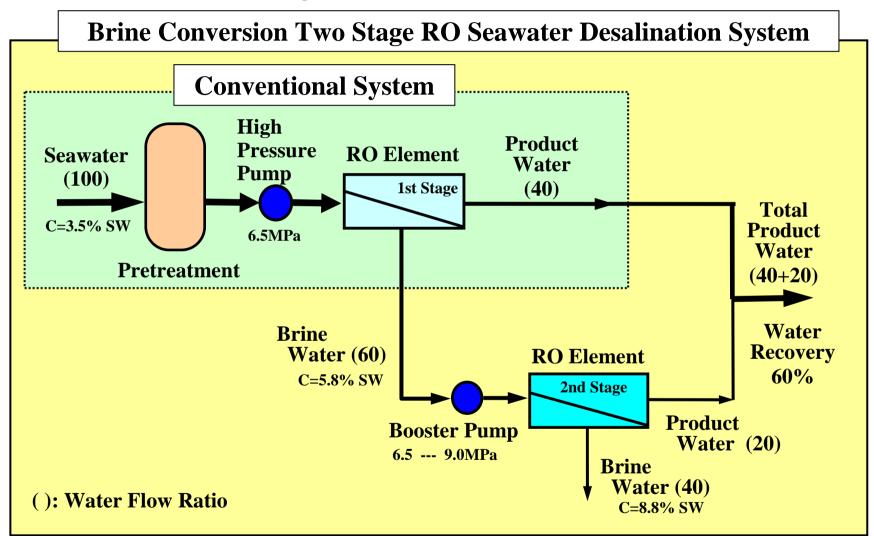
(Capacity: 40,000 m<sup>3</sup>/d, 1996)

40,000m<sup>3</sup>/d: Tap water for 160,000 people



RO Module Installation (each unit produces 5,000m<sup>3</sup>/d)

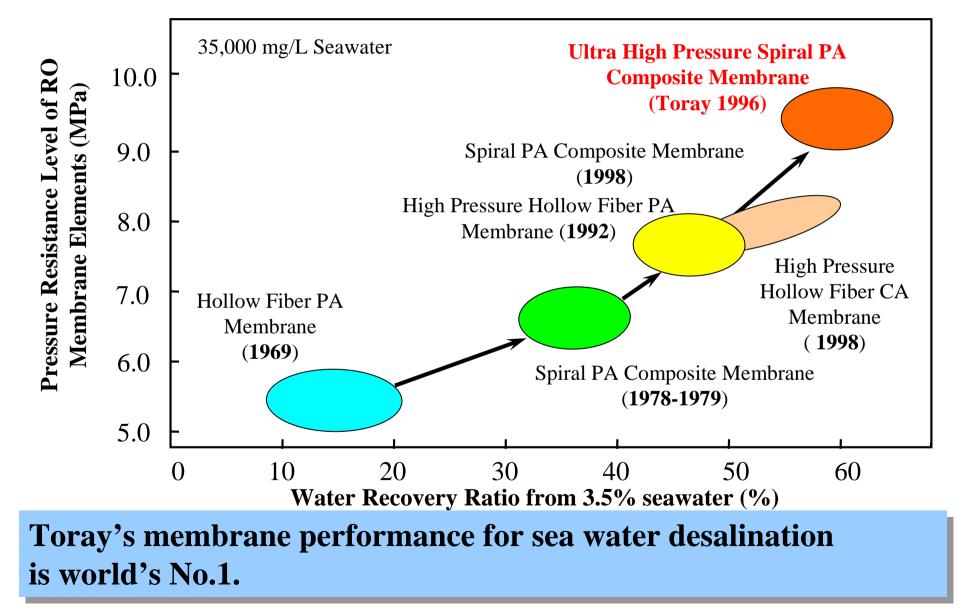
#### **Toray module is used in Japan's largest plant.**


#### **TORAY** Largest Sea Water Desalination Plants in the World

| No. | Country      | Plant Site    | Capacity<br>(m³/d) | Number<br>of Units |         | Operatio<br>ear) |                  | Membrane<br>Manufacturer |
|-----|--------------|---------------|--------------------|--------------------|---------|------------------|------------------|--------------------------|
| 1   | Trinidad     | Trinidad      | 136,000            | 8                  | 99      | 2002             | Ionics           | Toray                    |
| 2   | Saudi Arabia | Yanbu RO2     | 128,000            | 15                 | 92      | 98               | MHI              | Toyobo                   |
| 3   | Saudi Arabia | Al Jubail III | 91,000             | 15                 | 93      | 2000             | Preussag         | DuPont, Toray            |
| 4   | Saudi Arabia | Jeddah RO1    | 56,800             | 10                 | 86      | 89               | MHI              | Тоуово                   |
| 4   | Saudi Arabia | Jeddah RO2    | 56,800             | 10                 | 91      | 94               | MHI              | Тоуово                   |
| 6   | Spain        | Marbella      | 56,400             | 10                 | 97      | 99               | Inima            | DuPont                   |
| 7   | Malta        | Penbroke      | 54,000             | 10                 | -       | 94               | Polymetric       | DuPont                   |
| 8   | Bahrain      | Al Dur        | 45,000             | 8                  | 84      | 89               | Weirwest garthge | DuPont                   |
| 9   | Spain        | Bl Mallorca   | 42,000             | 6                  | 96      | 98               | Degremont        | DuPont, Toray            |
| 10  | Japan        | Okinawa       | 40,000             | 8                  | 94 - 95 | 96 - 97          | Kurita, etc.     | Toray, Nitto             |

\* DuPont withdrew from RO business in 2001

RO sea water desalination seems very difficult in the Arabian Gulf, because troubles occurred at all of DuPont's RO plants. Al Jubail III is the first successful plant.


#### **Typical Flow Diagram of Brine Conversion Two Stage RO'TORAY'** Seawater Desalination System



**Toray's Patent:** 

Japanese Patent Application 1994-245184(1994), US: 6187200(2001), CA: 216033(2001), RC: 302294(1997), AU: 691649(1998), EU(granted 2002), KR: 204608(1999), Pending - JP, CH

#### **Performance Trends of RO Membranes for Seawater Desalination**



# **'TORAY'** Global Installations of Toray Sea Water Desalination Ros



**KAE** Curacao (Netherlands, Antilles) 11,400 (m3/d)



Mas Palomas (Spain, Canary Island) No. 1 Plant 4,500 (m3/d) No. 2, 3 Plant 9,000 (m3/d)



Mas Palomas (Spain, Canary Islands)



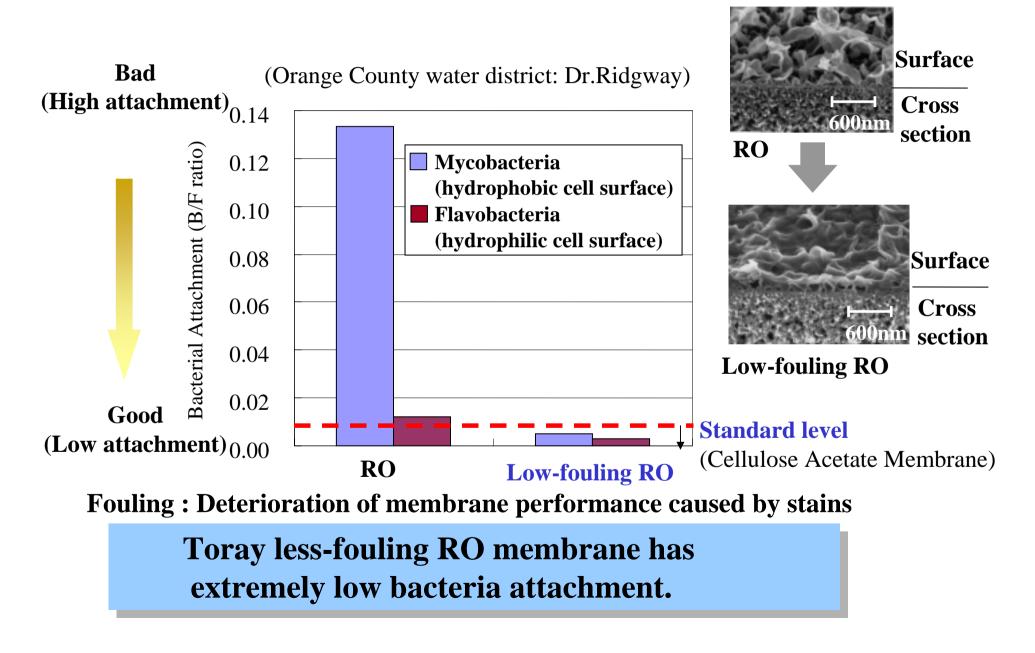
Okinawa (Japan) 40,000 (m3/d)



Tortola (British, Virgin Islands) 690 (m3/d)



:Toray's 2-Stage RO Systems :Conventional RO Systems


Trinidad and Tobago 136,000 (m3/d)

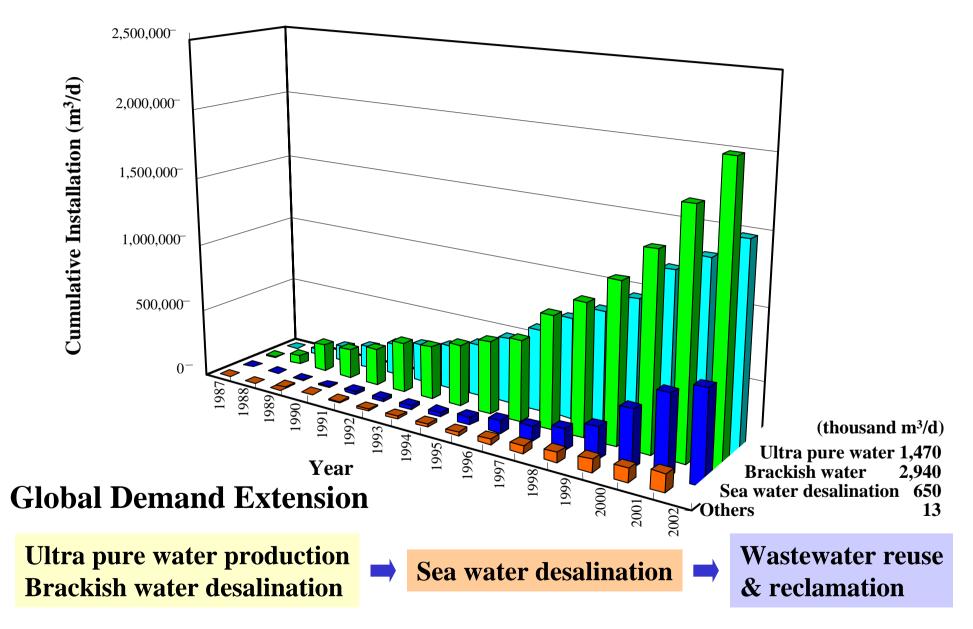
Al Jubail (Saudi Arabia) 91.000 (m3/d)



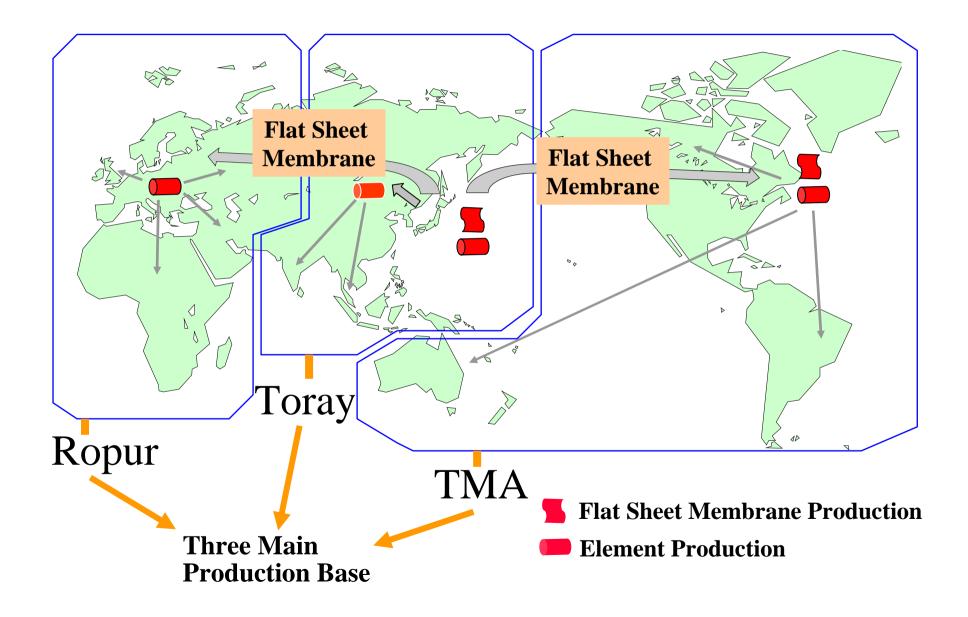


#### **Results of Membrane Biofouling (MBP) Assay**






#### **Wastewater Reclamation & Reuse Plants**


| Wa | astewater                 | Γ           |              | RO<br>↓   | fections<br>Reclamation<br>Reuse |
|----|---------------------------|-------------|--------------|-----------|----------------------------------|
|    | Plant (Country)           | Capacity    | Installation | MF/UF     | RO                               |
|    |                           | $(m^{3}/d)$ |              | Supplier  | Supplier                         |
|    | Jewel (Singapore)         | 30,000      | 2000         |           | Dow                              |
|    | Luggage Point (Australia) | 14,000      | 2000         | Pall      | Dow                              |
|    | Bedok (Singapore)         | 10,000      | 2000         | US Filter | Hydranautics                     |
|    | Bedok (Singapore)         | 32,000      | 2003         | Zenon     | Hydranautics                     |
|    | Kranji (Singapore)        | 40,000      | 2003         | US Filter | Hydranautics                     |
|    | Seleta (Singapore)        | 24,000      | 2003         | Hyflux    | Toray                            |
|    | Sulaibiya (Kuwait)        | 310,000     | 2004         | Norit     | Toray                            |
|    | Orange County (USA)       | 220,000     | 2004         | US Filter | Piloting                         |
|    | Ulpandan (Singapore)      | 140,000     | 2004         | Piloting  | Piloting                         |

Toray less-fouling RO was selected at the world's largest RO plant.

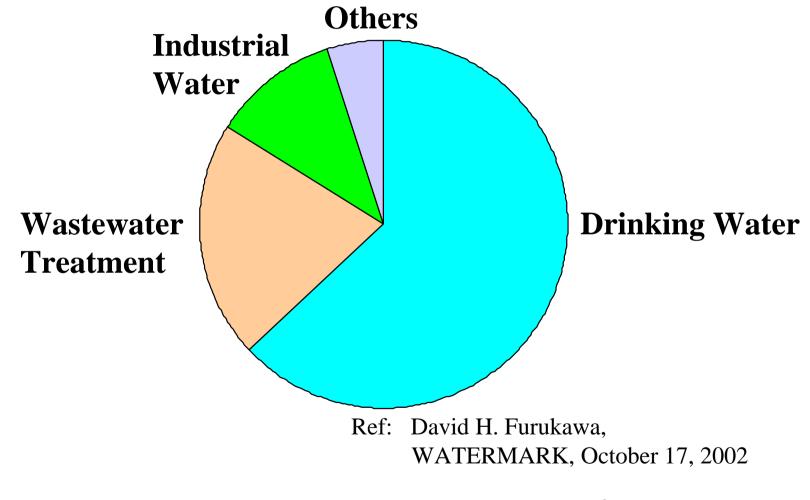
#### **'TORAY'** Cumulative Installations of Toray ROs by Application



#### **'TORAY'** Toray Group's Business Bases and Global Operations

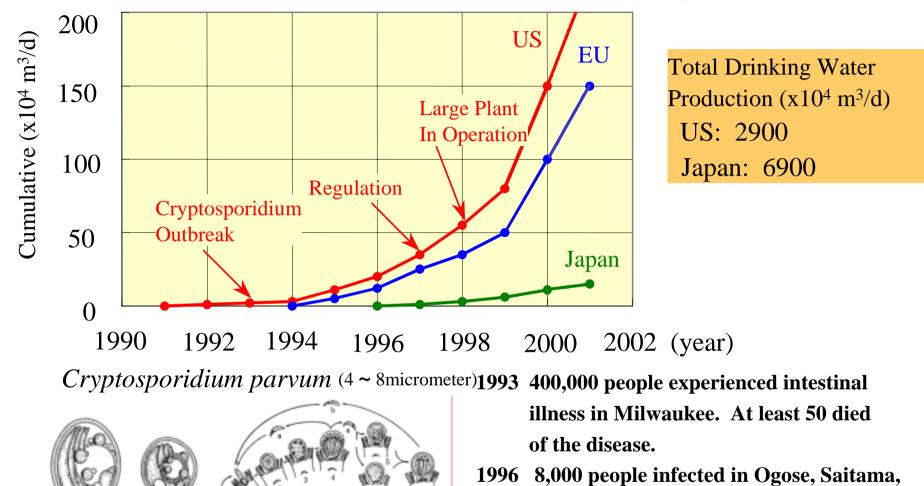





#### **Conclusion – RO•NF Membranes**

- 1. The RO seawater desalination system has entered a stable growth stage and the business is expanding steadily.
- 2. Wastewater reuse and reclamation is expected to be a new RO application.
- **3.** Expansion of the NF membrane businesses is expected in the pretreatment of seawater desalination, and in highly efficient water purification systems.




## **UF Membranes & MF Membranes - Drinking Water Production -**

#### **TORAY** UF & MF Membranes – Breakdown of World Applications -



#### Total Water Production: 4.9 million m<sup>3</sup>/d

#### **TORAY** Market for Hollow-fiber Membranes for Drinking Water Production



Japan

**1998** Enhanced regulations of surface water treatment

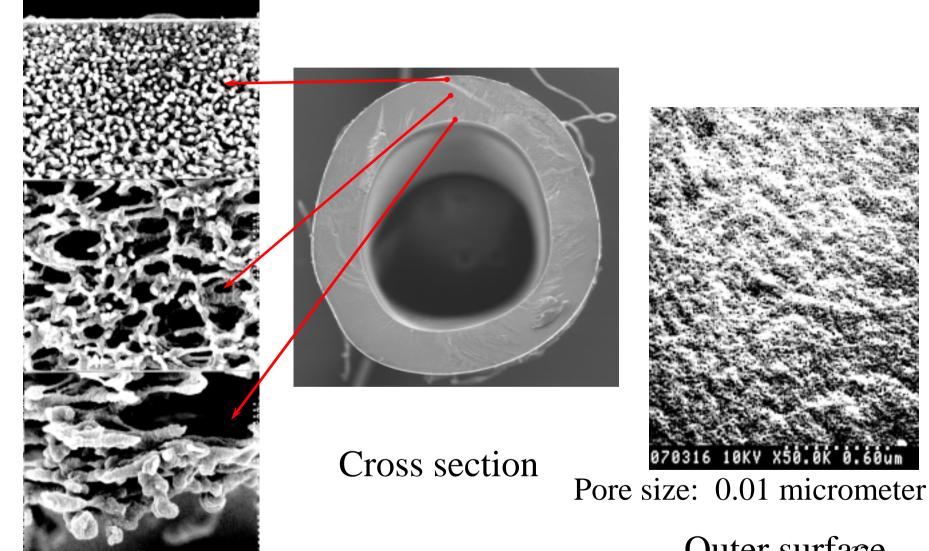
**Enhancement of Pathogen Regulations caused market expansion.** 

IN HOST

OUTSIDE HOST

 $2 \alpha m$ 

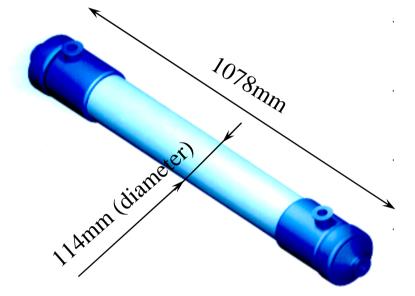
## 'TORAY'

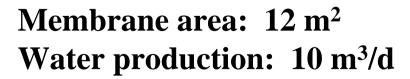

## **Membrane Filtration Plants for Drinking Water in Japan**

| Capacity | Location                 | Engineering | Membrane         | Installation |
|----------|--------------------------|-------------|------------------|--------------|
| (m³/d)   |                          |             | Supplier         | (Year)       |
| 4,000    | Saitama, Ogose           | Kurita      | Kuraray (UF)     | 1998         |
| 6,200    | Hokkaido, Nishisorachi   | Orugano     | Daiseru (UF)     | 1999         |
| 2,400    | Ooita, Notsu             | Hitachi     | Toray (UF)       | 1999         |
| 10,000   | Tochigi, Imaichi         | Orugano     | Daiseru (UF)     | 2000         |
| 1,900    | Fukui, Miyazaki          | Suido Kiko  | Asahi Kasei (UF) | 2000         |
| 1,600    | Fukushima, Aizuwakamatsu | Orugano     | Daiseru (UF)     | 2000         |
| 6,000    | Miyagi, Onagawa          | NKK         | Memcore (MF)     | 2001         |
| 5,000    | Mie, Kiho                | Ebara       | Mitsubishi (MF)  | 2001         |
| 1,900    | Fukui, Eiheiji           | Maezawa     | Toray (UF)       | 2001         |
| 4,500    | Gifu, Ena                | Suido Kiko  | Asahi Kasei (UF) | 2001         |
| 1,900    | Gunma, Showa             | Suido Kiko  | Asahi Kasei (UF) | 2001         |
| 5,000    |                          | Suido Kiko  | Toray (MF)       | 2002         |
| 8,000    |                          | Suido Kiko  | Toray (MF)       | 2003         |

Application of UF/MF membranes is expanding in Japan. Cumulative installations are 200,000 (m<sup>3</sup>/d) as of June 2003.

# 'TORAY'


# **PAN-based Hollow Fiber UF Membrane**

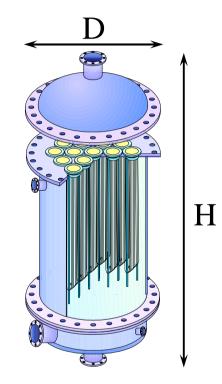



Outer surface



# **Casing Type Module**








**Drinking water production plant** 

# **Tank Type Module**





# Merit

- Low Initial Cost
- Small Footprint
- Easy Maintenance

| Flux (m <sup>3</sup> /d)        | 70  | 200 | 500 | 800 |
|---------------------------------|-----|-----|-----|-----|
| Membrane area (m <sup>2</sup> ) | 84  | 228 | 576 | 960 |
| Diameter (D) (cm)               | 45  | 75  | 120 | 150 |
| Height (H) (cm)                 | 200 | 230 | 250 | 250 |

# **Design Concept of PVDF Hollow Fiber MF Membrane**

#### **Operation**

- 1. High Water Flux
- 2. Low Operational Pressure
- 3. Frequent Physical Washing
- 4. Frequent Chemical Rinse

#### **Functional Requirement**

- 1. High Water Permeability
- 2. Precise Pore Size
- 3. High Physical Stability
- 4. Good Chemical Resistance

# **PVDF(Poly Vinylidene Fluoride) polymer is suitable**

Performance of hollow fiber membrane depends highly on spinning process

Proprietary spinning process

# High Permeability & High Physical Strength <sup>40</sup>

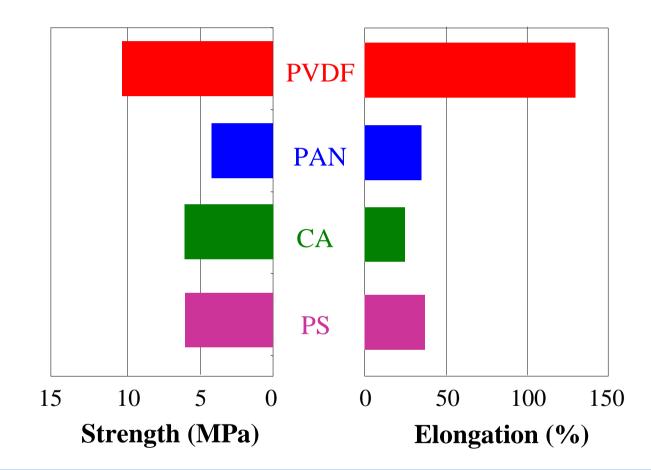


# **Toray PVDF Hollow Fiber Membrane**

|            | Spinning Method                                                                                                | Feature                                                                           | Outer surface Lumen |
|------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------|
| Spinning   | <b>Extraction</b><br>Melt spinning with pore<br>formation agent and extraction                                 | High Strength<br>High Cost                                                        |                     |
| Melt Spin  | <b>Drawing</b><br>Melt spinning and drawing                                                                    | High Strength<br>Low Cost                                                         |                     |
| Spinning   | Non-solvent Induced<br>Phase Separation<br>Polymer solution is<br>coagulated by non-solvent                    | UF/MF Applicable<br>Low Cost<br>Permeability and<br>High-strength<br>inconsistent | Water flow          |
| Solution S | Thermally Induced<br>Phase Separation<br>Polymer solution is cooled<br>down to phase separation<br>temperature | High Strength<br>High Flux<br>Low Cost                                            | 41                  |



## **Comparison of Hollow Fiber Membrane with Other Companies**


\* Pure Water, at 50 kPa

| Supplier                                              | U Coi | mpany | Z Company | N Company | A Company | Toray |
|-------------------------------------------------------|-------|-------|-----------|-----------|-----------|-------|
| Material                                              | PP    | PVDF  | PVDF      | PES       | PVDF      | PVDF  |
| Permeability*<br>(m <sup>3</sup> / m <sup>2</sup> -d) | 4.8   | -     | 1.5       | 3.0       | 5.3       | 6.7   |
| Membrane<br>Area (m <sup>2</sup> )                    | 30    | -     | 56        | 35        | 50        | 72    |
| Module                                                |       |       |           |           |           |       |

PP: Polypropylene, PVDF: Poly (Vinylidene Fluoride), PES: Poly (Ether Sulfone)

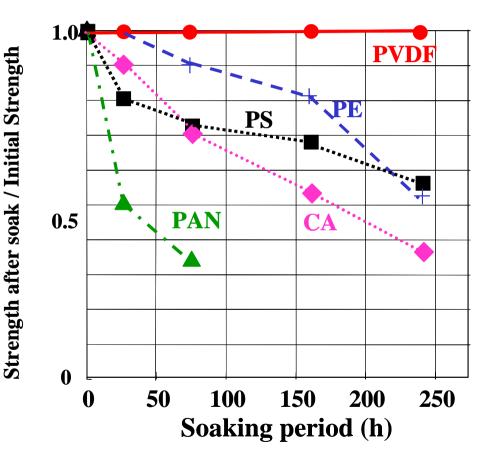
Toray's hollow fiber membranes are World's No.1 in permeability and the largest module.

# **Comparison of Strength & Elongation - Membrane Material -**



Physical property depends highly on material & spinning method.

#### **Comparison of Chemical Stability of PVDF Hollow Fiber** -Accelerated Oxidation-


## Purpose: Confirmation of stability against strong oxidation agent

#### **Accelerated oxidation**

- 1. Evaluation of membrane configuration
- 2. Evaluation under cleaning condition
- (5,000 ppm as  $H_2O_2$  with  $FeSO_4$ )

#### Results

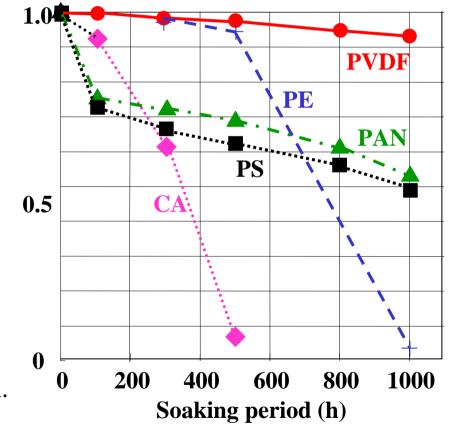
- 1. PVDF-MF membrane is very stable under strong oxidation conditions.
- 2. PVDF-MF membrane can be cleaned with a concentrated oxidation agent.



#### **Comparison of Oxidation Resistance**



#### **Comparison of Chlorine Resistance of PVDF Hollow Fiber**


## **Purpose: Confirmation of stability against chlorine**

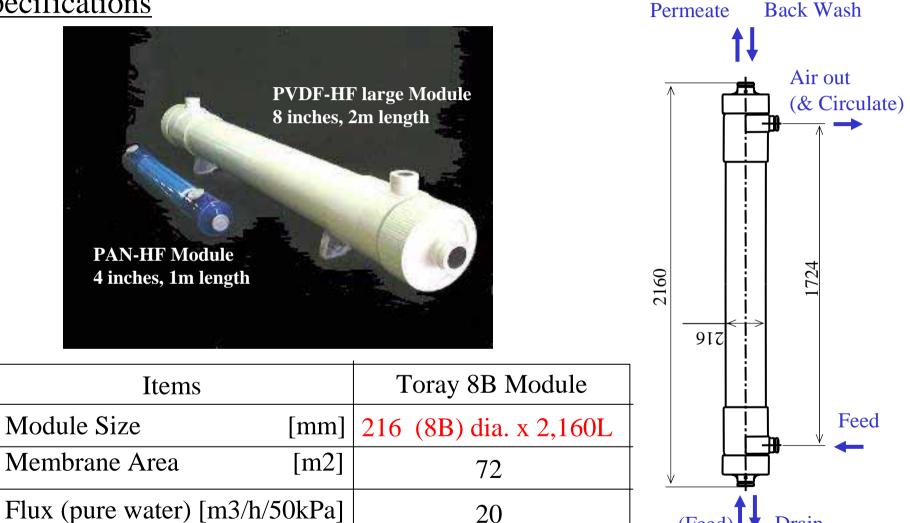
#### **Evaluation condition**

- 1. Evaluation of membrane configuration
- 2. Evaluation under cleaning condition
  - (1,000 ppm as Chlorine, **pH=10**)

#### **Results**

- Elongation after soak / Initial Elongation 1. PVDF MF membrane is very stable in a concentrated chlorine solution.
- 2. PVDF-MF membrane can be cleaned with a concentrated chlorine solution.




**Comparison of Chlorine Resistance** 

# **PVDF MF Membrane 8" Module**

[deg.]

### **Specifications**

Temperature

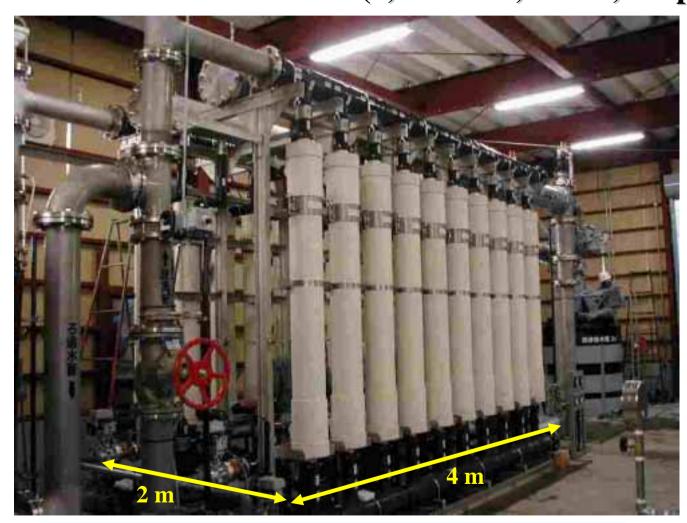


20

0 - 40

(Feed)

&Air


Drain

46

# **HFM-2020 Standard Operational Conditions**

| Feed Water Type                                     | Pretreated Water<br>Clean Ground Water                                                                                                                                     | River & Lake Surface<br>Water |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Filtration Flux (m <sup>3</sup> /m <sup>2</sup> /d) | 2-5                                                                                                                                                                        | 1 - 2                         |
| Backwash Condition                                  | Flux: 1 - 2 times of filtration flux<br>Chlorine dosing: 1 - 10 ppm<br>Time: 30 – 60 sec.<br>Frequency: every 0.3 – 2 h                                                    |                               |
| Scrubbing Condition                                 | Air flow: 4 – 10 Nm <sup>3</sup> /h/Module<br>Time: 30 – 120 sec.<br>Frequency: every 0.3 – 2 h                                                                            |                               |
| <b>Operation Temp. (degrees C)</b>                  | <b>≦</b> 40                                                                                                                                                                |                               |
| Operation pH                                        | 1 – 10                                                                                                                                                                     |                               |
| Chemical Cleaning                                   | Chemical Cleaning(1) CIP (Clean In Place): every 3 - 6 month<br>(2) Trans-Membrane pressure<br>(3 - 5 times of initial, or 150 H<br>(3) Chemicals: 1N-HCl + 3,000 ppm NaCh |                               |

# Large Scale Ground Water Filtration Plant (5,000 m<sup>3</sup>/d, for 20,000 people)



#### **Compact and High Productivity**

# **Outline of Suido Kiko Kaisha, Ltd.**

# Profile

Established Net Sales Function

- : 1936
- : 200 million dollars
- : One of the largest water system and equipment companies in Japan
- Alliance with Toray
- : Toray owns 20% of shares
  - Joint water business venture
  - Development of new systems and membrane products
  - Sharing and exchange of technical and business information

## **Domestic position**

Positioned in 15th place as a water treatment company, second, behind Ebara, in the drinking water production business, and first in membrane filtration systems (Orugano second, Ebara third) 49



# **Toray Collaboration with Suido Kiko**



- manufacturer in the drinking water systems business
- Experience in Government and Public Businesses

### **Toray's Advantages**

- Capable of meeting diverse demand with a wide range of products from MF to RD membranes
- Operating businesses in Japan, the U.S., and Europe

**Development into an Overall Water Treatment System Business** 

Japan : Supplies Membranes to Suido Kiko Korea/China : Jointly Launched Business -Toray Supplies Membrane Technology, Suido Kiko Offers Engineering Technology<sub>50</sub>

## Water Treatment Related National Projects

| Year | Title                                                   | Toray's R&D Theme                                                                                                                        |
|------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 1992 | Project Membrane Aqua Century 21                        |                                                                                                                                          |
| 1993 | (MAC21)                                                 |                                                                                                                                          |
| 1994 | New Membrane Aqua Century 21                            | - Highly efficient water purification system                                                                                             |
| 1995 | (MAC21)                                                 | utilizing NF membranes<br>(Toray Engineering Co.)                                                                                        |
| 1996 |                                                         |                                                                                                                                          |
| 1997 | Advanced Aqua Clean Technology for the 21 <sup>st</sup> | [Search for New Technology Application of Membrane Filtration]<br>- Development of efficient coagulation and sedimentation technology to |
| 1998 | Century<br>(ACT21)                                      | be applied in the UF pretreatment                                                                                                        |
| 1999 |                                                         | -Development of operational stability during the NF advanced water purification process                                                  |
| 2000 |                                                         | [Development of Advanced Water Purification System of River Water]<br>- Technological examination of combination of conventional water   |
| 2001 |                                                         | purification systems and membrane filtration                                                                                             |
| 2002 | Environmental, Ecological, Energy Saving and            | Group 1: Development of large-capacity membrane filtration                                                                               |
| 2003 | Economical Water Purification System<br>(e-Water)       | technology (Kawai,Yokohama/Shinishikawa,Okinawa)<br>Group 2: Total water purification system                                             |
| 2004 |                                                         | (Ayase, Yokohama/Otogane, Fukuoka)<br>Group 3: Observation technology at the drinking water supply                                       |
|      |                                                         | source 51                                                                                                                                |

## **Participation in National Project (e-water)**



#### Water Drinking Production Plant Order Award Requirements:

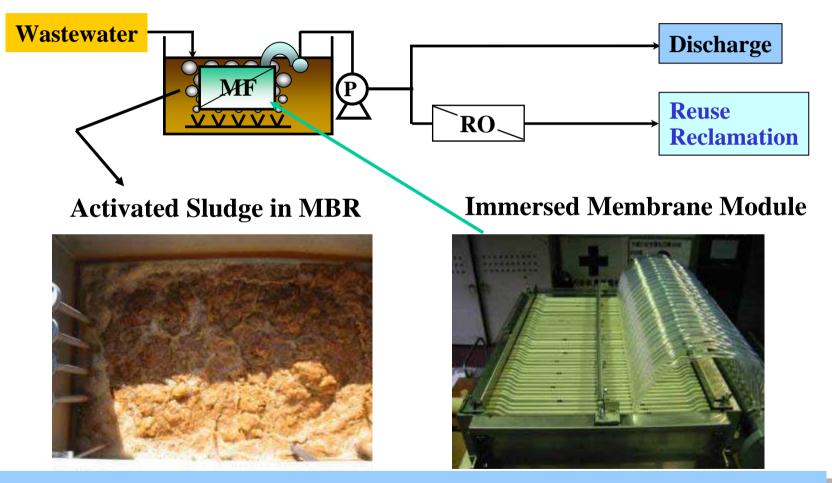
1. Qualification of the Facility

- 2. Approval of Construction Work
- 3. Acquisition of National Licenses
- 4. Actual Experience in Plant Delivery

| Water Purification Plant                   | Feed Water  | Subject                                                                                                                                                                                                                               | Participants/<br>Toray's Expected Role                                                                                                                                          |
|--------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kawai,<br>Yokohama<br>June/03 -<br>Mar/05  | Fresh Water | <ul> <li>Comparative Experiments of 6<br/>Groups, including Ebara</li> <li><u>Case Trial - 200,000 m<sup>3</sup>/d</u></li> </ul>                                                                                                     | <ul> <li>Toray/Suido Kiko Joint Team</li> <li>Toray; Experiment Supervisor,<br/>Basic Design, Manufacture of<br/>Experimental Facility, Follow-up of<br/>Operations</li> </ul>  |
| Ayase,<br>Yokohama<br>Aug/03 - Mar/05      | Fresh Water | - Examination of Appropriate<br>Operating Conditions                                                                                                                                                                                  | <ul> <li>Co-R&amp;D of 38 Companies</li> <li>Toray; Basic Design, Supply of<br/>PVDF Modules</li> </ul>                                                                         |
| Otogane,<br>Fukuoka<br>Sept/03 -<br>Mar/05 | Fresh Water | <ul> <li>Comparative Experiments of 5<br/>Groups including Maezawa and<br/>Shinko Pantec</li> <li><u>Case Trial - 110,000 m<sup>3</sup>/d</u></li> </ul>                                                                              | <ul> <li>Suido Kiko as the Supervisor</li> <li>Toray; Supplies PVDF</li> <li>Modules, Supports System</li> <li>Examination</li> </ul>                                           |
| Ishikawa,<br>Okinawa<br>Oct/03 -<br>Mar/05 | Fresh Water | <ul> <li>MF Pretreatment+NF Membrane<br/>(to confront Ozone + Activated<br/>Carbon Method)</li> <li>Only Successful Group to actually<br/>demonstrate use of membranes</li> <li><u>Case Trial - 50,000 m<sup>3</sup>/d</u></li> </ul> | <ul> <li>Nishihara; Supervisor, Joint<br/>Team of Suido Kiko, Ebara,<br/>Kubota, and Toray</li> <li>Toray; Basic Design and<br/>Supply of PVDF and NF<br/>Modules 52</li> </ul> |

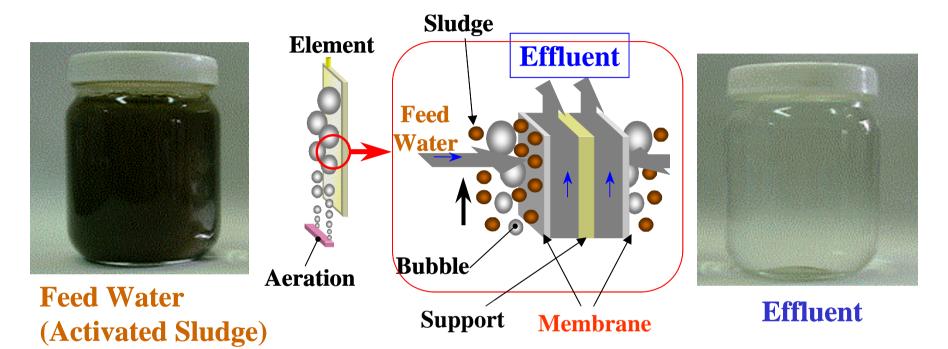


#### **Conclusion - UF/MF Membranes for Drinking Water**


- 1. The Drinking Water Production Market is expanding rapidly, centering on the U.S. and Europe.
- 2. Toray has developed highly water-permeable and highly stable PVDF hollow fiber large modules suitable for drinking water production.
- **3.** Although still in the experimental stage, Toray's technology is highly appraised, and we are aiming to enter the market as soon as possible.



# Immersed Membrane Modules for Wastewater Treatment


# **Immersed Membrane Module System**

## **MBR (Membrane Bioreactor)**



Features good water quality, small footprint, reduced excess sludge, and the market is yet undeveloped.

# **Filtration Mechanism and Required Characteristics**

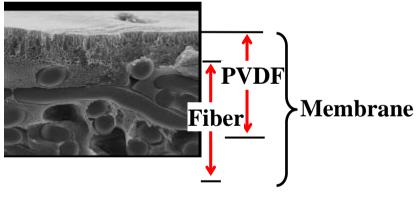


| Requirement  |                      |                                           |  |  |
|--------------|----------------------|-------------------------------------------|--|--|
| Stability    | Physical Stability   | Impact of bubble and sludge. Vibration.   |  |  |
| Stability    | Chemical Stability   | Chlorine, acid, oxidation agent, alkaline |  |  |
| Dormoshility | Initial Permeability | High permeability                         |  |  |
| Permeability | Durability           | <b>Prevention for clogging</b> 56         |  |  |

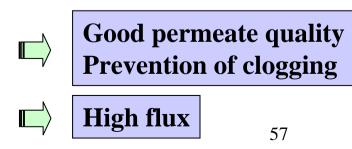


нн

# **Design Concept of Immersed Membrane**

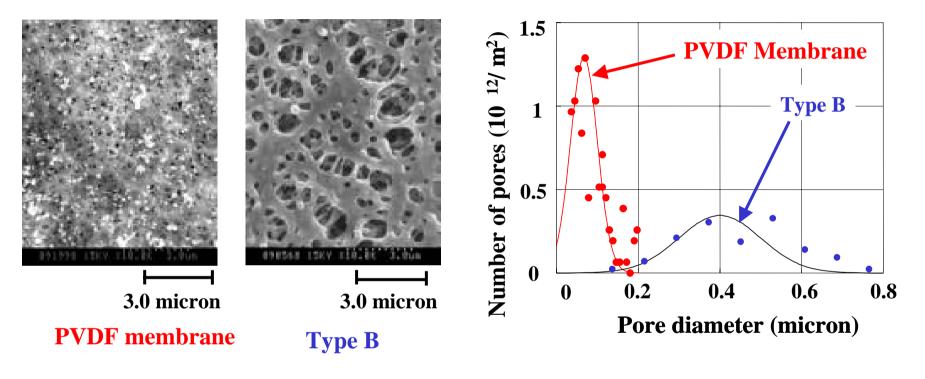

# **1. Membrane Material**

Poly (Vinylidene Fluoride): PVDF


High stability for chemicals : fluorine polymerHigh physical strength: high molecular weight<br/>(MW=300,000-400,000)

## 2. Membrane Form

Fiber reinforced (non-woven) flat sheet membrane



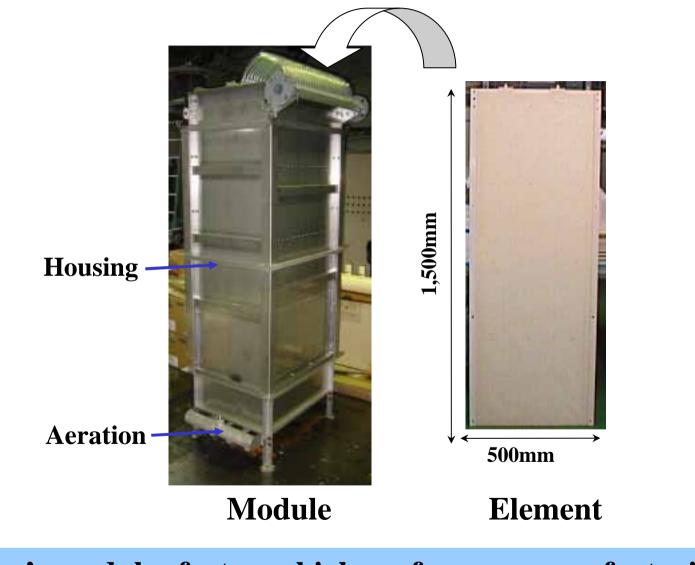

- **3. Surface Pore Diameter** 
  - 1) Small pore diameter
  - 2) Narrow pore diameter distribution
  - **3) Numerous pores**





## **Basic Characteristics of Immersed Membranes**

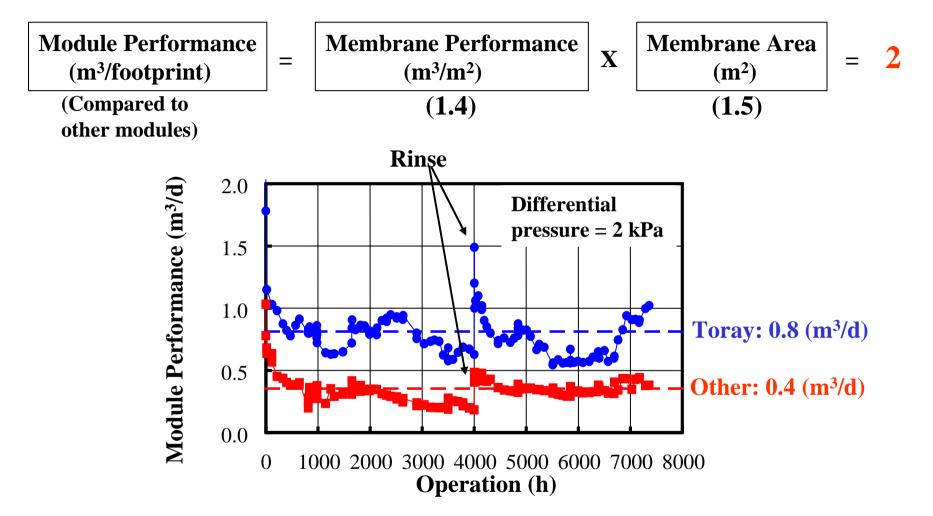



FE-SEM photographs of Flat sheet membrane surface

Pore diameter distribution of surface (Estimated from SEM photos)

Ideal membrane micro structure is achieved.




# **Immersed Membrane Element & Module**



**Toray's modules features high performance per footprint.** 9



# **Comparison of Module Performance**



Toray module performance is twice as competent as others.

# **Operational Technology**

# 1. Roll of Operational Technology

- 1) To maintain efficiency and stability of the performance of modules and module elements
- 2) To achieve module performance targets at low cost
- 3) Required as software in case of selling modules and module elements

# 2. Alliance with SKG\*

- 1) Joint pilot tests in Europe and Singapore
- 2) Joint businesses in Europe, Singapore, and China

#### \* SKG (Seghers Keppel Technology Group): More than 200 Activated Sludge System installations Worldwide

# **Pilot Test at Beverwijk WWTP (the Netherlands)**

# Consulting company DHV conducts tests of MBR suppliers and immersed membranes



## Conclusion

## - Immersed Membranes for Wastewater Treatment

- 1. Performances such as good water quality, small footprint, and reduced surplus sludge are expected in MBR technology, and the market is still globally new.
- 2. Toray has developed highly stable, highly permeable and reduced clog types of PVDF flat sheet membrane modules.
- 3. Toray making progress in pilot tests in Europe, Singapore, and China, and aiming at entering the market at an early stage.

# Conclusion

## - Toray's Membrane Separation Technology for Water Treatment

- 1. Toray is a synthetic membrane manufacturer whose products cover all types RO, NF, UF, and MF.
- 2. Placing top priority on seawater desalination, drinking water production, and wastewater treatment, Toray intends to expand its membrane technology business throughout the world.
- 3. High water quality and an Integrated Membrane System (IMS), a combination of several membranes, is required in the future market. Toray, possessing all types of membranes, is in an advantageous position in expanding business utilizing the IMS.

# **Toray can contribute to ensuring sustainable water resources** with membrane technology.

**River, Lake, Ground Water** 



Sea Water



Wastewater





